Обслуживание и ремонт газоперекачивающих агрегатов с газотурбинным приводом
1.5.Виды дефектов и неразрушающий контроль ГПА
В общем случае под понятием «дефект» принято понимать каждое несоответствие продукции требованиям, установленным нормативной документацией (ГОСТ 17102-71).
Дефекты подразделяются на явные и скрытые. Явные дефекты, как правило, обнаруживаются визуально, скрытые - с помощью специальных приборов.
Полное и тщательное проведение дефектоскопии узлов и деталей является первостепенной задачей ремонта. От качества и полноты её выполнения зависит надёжная работа ГПА в течение межремонтного периода. В результате дефектоскопии определяются характер и размер дефектов, что даёт возможность после сравнения с техническими требованиями установить пригодность детали или узла к дальнейшему её использованию, наметить способ ремонта.
Возникновение дефектов связано со следующими причинами.
- Естественный "износ", происходящий, как правило, в период выработки установленного заводом-изготовителем ресурса работ деталей и узлов.
- Конструктивный недостаток, являющийся результатом недостаточно полного учёта при проектировании и изготовлении всех действующих в реальных условиях эксплуатационных факторов. Конструктивный недостаток проявляется главным образом в начальный период эксплуатации и устраняется путём изменения конструкции, материалов и технологии производства.
- Нарушение или несовершенство технологии ремонтно-восстановленных работ.
- Нарушение Правил технического обслуживания и эксплуатации, например, длительная работа на запрещённых оборотах при повышенной вибрации и температуре подшипников, на загрязнённых масле, газе и цикловом воздухе, невыполнение регламентных работ в установленные сроки.
- Нарушение правил транспортировки и хранения.
Дефектоскопия включает в себя следующие этапы: подготовка рабочего места, средств измерения и материалов; очистка поверхности дефектируемой детали; выявление и измерение дефектов.
При организации рабочего места для дефектоскопии необходимо выполнять следующие правила:
- устанавливать роторы на козлы с роликовыми опорами;
- лопатки, промвставки и другие малогабаритные детали раскладывать на чистую мешковину;
- обеспечивать свободный доступ ко всем деталям и узлам со всех сторон;
- обеспечивать возможность близкого и безопасного подключения приборов;
- устанавливать стол для приборов и ведения записей;
- приготавливать керосин, чистую ветошь, мел, наждачную бумагу, масло к началу работы на рабочем месте.
Дефектоскопию деталей в условиях КС и ремонтно-технических мастерских осуществляют методом неразрушающего контроля, т. е. без нарушения их к дальнейшему использованию. При выборе метода дефектоскопии необходимо учитывать характер и расположение дефекта, технические условия на отбраковку, материал детали, состояние и чистоту поверхности, форму и размер детали.
Применяют главным образом следующие методы:
Визуально-оптический метод заключается в осмотре с помощью лупы многократного увеличения больших поверхностей и труднодоступных мест деталей из различных материалов для обнаружения трещин, механических и коррозионных повреждений, нарушения сплошности защитных покрытий, остаточных деформаций, изменения характера разъёмных и неразъёмных соединений, течи, следов излома, задеваний. Этим методом можно обнаружить трещины с шириной раскрытия более 0,005-0,01 мм и протяжённостью более 0,1 мм.
Цветной метод основан на проникающих свойствах жидкости и используется для обнаружения открытых трещин, пор, коррозионных повреждений деталей, различных по форме и размерам, изготовленных из магнитных и немагнитных материалов. Технологический процесс определения дефектов этим методом состоит из следующих операций: очистка и обезжиривание поверхности; пропитка поверхности индикаторным раствором; удаление избыточного индикаторного раствора с поверхности для его сохранения только в трещинах; нанесения на поверхность проявителя; осмотр детали и оценка состояния. Цветным методом можно обнаружить трещины в лопатках и дисках, корпусных и крепёжных деталях шириной раскрытия более 0,001-0,002 мм, глубиной более 0,01-0,03 мм и протяжённостью более 0,1-0,3 мм.
Ультразвуковой метод основан на свойстве распространения упругих колебаний в металлах и их отражения от границы раздела двух сред. Этот метод используют для обнаружения внутренних и наружных дефектов в труднодоступных местах у деталей, изготовленных из магнитных и немагнитных материалов. Метод не применим при наличии галтели, отверстий. Этим методом можно обнаружить трещины с шириной распространения 0,001-0,003 мм и глубиной более 0,1-0,3 мм.
Токовихревой метод основан на возбуждении в поверхности детали с помощью датчика вихревого тока, сила которого различна в местах изменения сплошности или свойств металла. Наиболее распространёнными приборами этого метода являются дефектоскопы. Этот метод используют для обнаружения открытых и закрытых поверхностных дефектов у деталей из электропроводных материалов. Метод позволяет обнаружить трещины шириной раскрытия более 0,001 мм, глубиной 0,15-0,2 мм и протяжённостью более 0,6-2 мм.
В том случае, когда по каким-то причинам использование приведённых методов затруднительно, применяют метод травления. Он основан на том, что под воздействием растворов кислот места повреждения растворяются быстрее, чем прилегающая поверхность, и трещины становятся видимыми на блестящем фоне. Для травления деталей из углеродистой и неуглеродистой стали используют 10%-ный водный раствор азотной кислоты.
Простыми способами обнаружения грубых дефектов, не требующих специальных приборов и материалов, является метод керосиновых проб и метод простукивания. Керосин, обладающий хорошими проникающими свойствами, при наличии дефекта выступает на меловой стороне. С помощью простукивания определяют ослабление плотности посадки, ослабление прилегания, нарушение сцепления металлов и т. д. При нарушении сплошности металла - звук дребезжащий и глухой.
Дефектоскопия ротора включает:
- измерение радиального биения с помощью индикатора. Для ускорения измерения желательно замеры вести по нескольким индикаторам;
- осмотр шеек и опорного диска ротора для обнаружения трещин и оценки шероховатости;
- осмотр бочки ротора для обнаружения трещин;
- изменение эллипсности и конусности шеек, а также толщины упорного гребня с помощью микрометра;
- измерение торцевого биения дисков;
- проверку неуравновешенности роторов на балансировочном стенде;
- определение расцентровки роторов ТНД и нагнетателя;
- осмотр места посадки и обода диска методом неразрушающего контроля;
- проверку положения роторов относительно расточек.
- определение натягов между крышками подшипников и вкладышей;
- определение верхних масляных зазоров;
- изменение разбегов роторов;
- измерение толщины колодок упорных подшипников;
- оценку состояния баббитовой заливки.
Дефектоскопия лабиринтных уплотнений включает в себя определение радиальных зазоров с помощью свинцовых оттисков и визуальный контроль состояния.
Дефектоскопия нагнетателя включает:
- выявление с помощью методов неразрушающего контроля трещин на элементах колеса, в особенности в местах соединения лопаток с покрывающим диском;
- визуальный осмотр деталей нагнетателя.
Дефектоскопия зубчатых соединений включает:
- определение видимых и скрытых дефектов методами неразрушающего контроля;
- проверку боковых зазоров с помощью щупа;
- проверку площадок и места положения контакта зубьев по краске;
- проверку относительного положения осей колеса и шестерни относительно друг друга.
- проверку плотности прилегания опорных лап и зазоров на дистанционных болтах;
- проверку зазоров в шпоночных соединениях;
- проверку коробления горизонтальных фланцев по свинцовым оттискам;
- выявление трещин в корпусах методом неразрушающего контроля;
- проверку плотности и равномерности укладки тепловой изоляции;
- проверку системы охлаждения.
При дефектоскопии лопаточного аппарата измеряют радиальные зазоры направляющих и рабочих лопаток, очищают лопатки для предварительного визуального осмотра на предмет обнаружения явно выраженных дефектов: высокотемпературной коррозии, деформации лопаток. Определяют частоту собственных колебаний рабочих лопаток осевого компрессора. Методами неразрушающего контроля проводят дефектоскопию поверхности лопаток осевого компрессора непосредственно на роторе и статоре без разлопачивания. Особенно тщательно должны контролироваться входные кромки. Обнаруженные дефекты независимо от размера и характера заносятся в ремонтные формуляры.
Наиболее вероятными причинами возникновения дефектов являются:- задевание лопаток ротора за статор;
- длительная работа в режиме помпажа и запрещённых оборотов;
- увеличение сопротивления всасывающего тракта;
- наличие агрессивных веществ и механических примесей в цикловом воздухе;
- повышение температуры продуктов сгорания перед ТВД;
- ослабление или увеличение натягов в посадочных местах лопаток;
- грубая обработка поверхности;
- повышение твёрдости металла из-за пережога при шлифовке или других видов механической обработки.
Прежде чем задать вопрос прочитайте: FAQ
admin
Автор5-10-2018, 11:55
Дата пуликацииГлавная / Литература / Пособия, методички, самоучители
Категория- Комментариев: 0
- Просмотров: 625
Созданный воздушный поток, в результате действия эффекта эжекции (КПД эжектора -до 30%), засасывает воздушные массы из окружающей среды, попав в воздушный поток, приобретают дополнительную кинетическую энергию, а совокупный (исходящий от несущего винта и поступившие воздушные массы из окружающей среды, который больше подъемной силы несущего винта) вращает пневмотурбину, генератор которой вырабатывает электроэнергию и она подается на электродвигателя, вращающие несущий винт устройства через понижающие редуктора. При проведении экспертизы заявки по существу, эксперт считает, что эффекта эжекции не будет, а кинетическая энергия воздушного потока, исходящего от несущего винта, просто уменьшится в результате трения подвижного потока о неподвижный.
Пытался найти механизм поступления воздуха в компрессор низкого давления в ГТД (газотурбинный двигатель), но, к сожалению, ничего не нашел. Что мне делать и как доказать эксперту, что эжекция будет. Если я не докажу этого эксперту, то патент мне не выдадут.
Буду очень благодарен за подсказку доказательств о создании эффекта эжекции (засасывании) движущимся воздушным потоком. Мой E-mail: vnrashupkin@mail.ru